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1. P. P. Korovkin [1] has recently proved some remarkable results con
cerning the convergence of sequences (Lnf),::~l' where the Lnare linear positive
operators. For example, if L.fconverges uniformly tofin the particular cases
f(t) == 1,j(t) == t,j(t) == t 2, then it does so for every continuous, realf. Or, if
Lif) converges uniformly to f for f(t) == 1, cost, sint, it does so for every
continuous, 2rr-periodic, realf.

2. In a very recent paper [2], the authors have recast Korovkin's results
in a quantitative form. One of their results (Theorem 3 of [2)) was given there
as, essentially, a special case of a more general theorem. In the present note, we
shall restate this Theorem 3 and, for the reader's convenience, give its full proof.
We then apply it to an important special case.

3. A linear positive operator is a function L having the following
properties.

a. The domain D of L is a nonempty set of real functions, all having the
same real domain T.

b. For every fED, L(f) is again a real function with domain T.
c. Iffand g belong to D, and if a and bare reals, then af+ bg E D, and

L(af+ bg) = aL(f) +bL(g).

d. Iff ED, andf(x);;;. 0 for every x E T, then (Lf) (x) ;;;. 0 for every x E T.
Consequently, if L is a linear positive operator and f, g E D, then f.:;;; g

throughout T implies Lf.:;;; Lg there, and IfI ,;;;; g throughout T implies ILfl .:;;;
Lg there.

4. THEOREM [2]. Let L}> L2, ••• be linearpositive operators, whose common
domain D consists of real functions with domain (-co, co). Suppose 1, cos x,
sinx,f belong to D, where f is an everywhere continuous, 2rr-periodic function,
with modulus of continuity w. Let -co < a < b < co, and suppose that for n = 1,
2, ... , L.(I) is bounded in [a,b]. Thenfor n = 1, 2, ... ,

Ilf-Lnfll,;;;; Ilfll'IILil) - 111 + IILn(l) + lllw(/Ln),
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where (see Remark b)
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_ I!( . 2 t - X) 1/2
JLn - rrll LnSill -2~ (X) , (2)

and 1111 stands for the sup norm over [a, bJ. In particular, ifLn(I) = I, as is often
the case, (I) reduces to

(3)

Remarks. a. In forming Ln sin2 [(t - x)/2J in (2) and below, t is the variable.
b. Observe that (2) implies, for n = 1,2, ... ,

fLn2 ~ (rr2/2)[lIl -Li1)[l + I!cosxll' [[cos x - (Lncost)(x)[[

+ Iisin x/I'I/sinx - (Lnsin t)(x)IIJ.

Hence, ifLnCF) converges uniformly to F in [a, bJfor F(t) ;: Fo(t) ;: 1, F(t) ;:
Ft(t)==cost, F(t) == FzCt) == sint, then JLn -+ 0 and we have a simple estimate
of JLn in terms of IIFk - LnFkll, k = 0, I, 2.

Proofofthe Theorem. Let x E [a, bJ, let 8 be a positive number and let t be real.
If 8 < It - xl ~ rr, then It - xl ~ rrsin [it - xl/2] and therefore

If(t) - f(x)1 ~ w(lt - xl) = w(it - x18- 1 0)

~ (I + It - xI<')-l)w(O)

~ [1 + (t - x)2 0-2J w(o)

[
t - x]

~ 1 + (rr/o)2 sin2 -2- w(o).

The resulting inequality

If(t)-f(x)1 ~[l +(rr/O)2Sin2~~x]w(0) (4)

holds, obviously, if It - xl ~ 8. If It - xl> rr, let k be an integer such that
I(t + 2krr) - xl ~ rr; then

If(t) - f(x) I= /f(t + 2krr) - f(x) I~ [1 + (rr/o)2 sin2t + 2~rr - x]W(O)

[
t- X]

= 1 + (rrlo)2 sin2 -2- w(o).

Thus, (4) always holds. Let n be a positive integer. Then

I[Lnf- f(x)Ln(I)](x) I~ [(Ln(I) + 8-2rr2Lnsin2t ~ X) (X)]w(8)

~ [Ln(l)(x) + (fLn/o)2] w(8).
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If /Ln > 0, take 8 = /Ln' Then

I[Lnl - I(x)Lil)](x)I~ IILil) + 111 w<tLn),
\- I(x) +I(x)Ln(1) (x) \ ~ 1I/11'IILn(1) -111.

337

(5)

Adding, we obtain (1). If /Ln = 0, we have for every positive 8, J[Lnl
l(x)Ln(1)](x)! ~ w(8)Ln(1)(x). Letting 8 -+ °+ 0, we obtain (Ln/)(x) =
I(x)Ln(1) (x). Thus, by (5), \([- Lnf)(x)\ < 11/11'IILn(1) - 111, which implies (1).

5. Let D be the set of all real functions with domain (-00, (0), 27T
periodic and everywhere continuous. For n = 1,2, ..., let p\n>, p~n>, ..., p~n) be
given reals, and consider the operator Ln with domain D, defined by

where

a '"
c/>(x) '" 2° + k~l ak cos (kx) + bk sin (kx).

Assume that for n = 1,2, ... and every real x,

1 n

2+ k~l Pkn
) cos (kx) ;;;. O.

Since for n = 1, 2, '" and every c/> E D,

(7)

(8)

each Ln is a linear positive operator with Lil) = 1. Also, for n = 1, 2, ... , we
have

(Lnsin2 t ~ X) (x) == ~ (1 _p~n»).

Let lED have modulus of continuity w. Setting uix) == (Lnf)(x), we have
by (3),

max I/(x) - un(x)! < 2w(7T[2-1(1 - p\n»)jl/2),
-c:o<x<oo

n = 1, 2, ... , (9)

andin particular, unCx) converges uniformly to/(x) in (-00, (0) ifp\n) -+ 1.
The uniform convergence of un(x) to I(x) in (-00, (0) under the condition

p\n) -+ 1 was proved by P. P. Korovkin ([1], [3]). He has also shown [1] that for
n = 1, 2, ... and for every positive 8,

max I/(x) - un(x)\ < w(8){1 + 7TO-1[2-1(l- p\n»FI2}. (to)
-"'<x<'"
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For n = 1, 2, ... , let
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Mn= inf w(o){1 + 170-1[2- 1(1 - plnJ )F/2},
<5>0

so that the best estimate derivable from (10) is

max If(x) - anCx)I< Mn •
-oo<x<oo

(11)

(12)

We show now that (12) is essentially the same estimate as (9). We start by
observing that

w([l- p~nJF/2) < Mn< 2W(17[2-1(1- p~nJ)F/2), n = 1, 2, .... (13)

Indeed, let n be a positive integer. To prove the last two inequalities, we may
assume 1 - p~nJ > O. The right inequality in (13) is obtained from (11) by taking
0= 17[2-1(1 - p~nJ)FI2. To prove the left inequality of (13), we shall show that
for every 0> 0,

w([l - p~nJFI2) < w(o){t + 170-1[2- 1(1- p~nJ)]I/2}.

We may clearly assume 0 < (1 - p~nJ)1/2. Then, w([t - p~nJ]1I2) = w([l - p~n)FI2

0-10) < [1 + (1- p~n»1120-1] w(O) < 20-1(1- p~nJYl2w(O). So, w(o){l +170-1

[2-1(1 - pin»]1I2} > w(o) + 2-3/2 17w([1 - pin)] 112) > w([l - pinJ] 1/2).
From (13) it follows that for every positive K and for n = 1,2, ... ,

K ~1 w(K[I - p~n)FI2) < w([1 - pin ]I12) < Mn< 2w(K:72 K[I - p~nJFI2)

<2[1 +K~2]W(K[I_p~nJpl2).

Thus, for every positive K, the sequences M nand w(K[I - p~nJpl2) are of the
same order of magnitude. In particular, (9) and (12) are essentially the same
estimate. Also, if the left-hand side of (10) is positive for n = 1, 2, , then
the choice 0 = K(1 - p~n»I/2 in the right-hand side of (10), n = 1, 2, , where
K is any positive constant, can be considered an optimal choice. Taking
K = 17/yl2, the resulting inequalities (10) reduce to (9).

6. Example. Let Dbe as in the first sentence ofSection 5. For n = 1,2, ... ,
consider the operator Ln with domain D, defined by

where
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For n = 1, 2, ..., the (LneP) (x) are trigonometric polynomials introduced by de
la Vallee-Poussin [4]. They have the following representation:

(LneP)(x) =: (n!)2 [21T(2n) WI J:" eP(t)(2Cost~xrndt. (14)

Thus, for n = 1,2, ... ,LnePis ofthe form (6), and as is seen by comparing, for the
present case, (8) with (14), (7) holds for every real x. Let! E D have modulus of
continuity w, and set anCx) == (Ln!)(x). Since now p\n> = nj(n + 1), n = 1,2, ...,
we have by (9),

-~~~oo I!(x) - anCx)1 < 2W([2(n:1)]112)'

Thus, we have obtained the (known) result ([5], [6]), that for some universal
constant C,

max !!(x) - anCx)1 < Cw(n- 1I2)
-oo<x<oo
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